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Abstract Ecosystem services are the benefits that

humans derive from ecosystems. Freshwater mussels

perform many important functions in aquatic ecosys-

tems, which can in turn be framed as the ecosystem

services that they contribute to or provide. These include

supporting services such as nutrient recycling and

storage, structural habitat, substrate and food web

modification, and use as environmental monitors; reg-

ulating services such as water purification (biofiltration);

and provisioning and cultural services including use as a

food source, as tools and jewelry, and for spiritual

enhancement. Mussel-provided ecosystem services are

declining because of large declines inmussel abundance.

Mussel propagation could be used to restore populations

of commonmussel species and their ecosystem services.

We need much more quantification of the economic,

social, and ecological value andmagnitude of ecosystem

services provided by mussels, across species, habitats,

and environmental conditions, and scaled up to whole

watersheds. In addition, we need tools that will allow us

to value mussel ecosystem services in a way that is

understandable to both the public and to policy makers.

Keywords Biofiltration � Biomonitor � Habitat
modification � Hotspot � Nutrient cycling and storage

Humans derive many benefits from ecosystems. These

benefits, known as ecosystem services, include provi-

sioning services obtained directly from the ecosystem

such as water, food, and timber; regulating services

such as water purification, climate control, carbon

storage, and pollination; supporting services such as

nutrient recycling and storage; and cultural services,

which are the benefits that people obtain through

tourism and recreation, aesthetic experiences, or

spiritual enrichment (Daily et al., 1997). Freshwater

systems contribute to many important ecosystem

services such as provisioning of clean water, recre-

ation, and ecotourism (Brauman et al., 2007; Dodds

et al., 2013). While ecosystem services can be

categorized in different ways, this review follows the

designations of the United Nations Millennium

Ecosystem Assessment (http://www.

millenniumassessment.org/en/index.html).

Freshwater mussels (hereafter mussels) perform

many important functions in aquatic ecosystems,

which have been well described (Vaughn & Hak-

enkamp, 2001; Strayer, 2008; Vaughn et al., 2008;

Haag, 2012). Mussel functions in ecosystems can in

turn be framed as the ecosystem services that they

provide or contribute towards (Fig. 1; Table 1).

Ecosystem services to which mussels contribute
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include the regulating service of water purification

(biofiltration); supporting services such as nutrient

recycling and storage, structural habitat, and sub-

strate and food web modification; and provisioning

and cultural services including use as a food source,

as tools, jewelry and art, and for spiritual enhance-

ment (Table 1). This review deals mainly with

mussels in the order Unionoida, although I include

some references to the invasive Asian clam, Cor-

bicula fluminea, which in many ways functions

similarly to unionids (Vaughn & Hakenkamp, 2001).

This review concentrates on North American mus-

sels, because most of the literature is for this region,

but I have included information from other regions

where it is available.

Regulating services: mussels as biofilters

that purify water

Mussels are powerful filter feeders that remove

particles from both the water column and interstitial

sediments (Fig. 1) (Vaughn et al., 2008). While it was

long thought that mussels fed principally on phyto-

plankton, recent advances for tracking nutrient assim-

ilation, such as stable isotopes and fatty acids, have

shown them to be omnivores whose diet varies with

habitat and food availability (Christian et al., 2004;

Vaughn et al., 2008; Newton et al., 2013). For

example, mussels in small temperate streams feed on

a mixture of bacteria and suspended/re-suspended

algae (Raikow & Hamilton, 2001), while mussels in

Fig. 1 Mussel tissue and activities that mussels perform can be translated into ecosystem services that are beneficial to humans

Table 1 Ecosystem service

classes, mussel-provided

ecosystem services, and the

benefits that they provide

for humans

Ecosystem service class Mussel-provided ecosystem service Benefits for humans

Regulating Biofiltration Water quality

Supporting Nutrient cycling and storage Water quality

Habitat/habitat modification Fish habitat

Environmental monitoring Water quality

Food webs Biodiversity

Provisioning Food for other species Biodiversity

Food for humans Food provisioning

Products from mussel shells Pottery, jewelry, art

Cultural Cultural value Spiritual benefits

Existence value Conservation value
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large productive rivers feed primarily on phytoplank-

ton (Thorp et al., 1998).

Biofiltration by mussels can remove significant

quantities of particles from the water column. In a

classic example, Welker & Walz (1998) found that

high densities of unionids could remove enough

phytoplankton to cause ‘‘biological oligotrophication’’

in the River Spree, Germany. Recently, Pigneur et al.

(2014) estimated a 70% loss of phytoplankton biomass

and a 61% decline in annual primary production in

areas where invasive Corbicula have reached high

densities in the River Meuse. Chowdhury et al. (2016)

found that mussels in a Bangladesh Lake filtered the

lake margins in 21 h, supporting high water clarity

despite high nutrient levels. While this is an area of

active research, most studies are lab-based, and simply

applying laboratory filtration estimates to real mussel

assemblages in heterogeneous habitats can be inaccu-

rate. For example, Vanden Byllaardt & Ackerman

(2014) found that unionid clearance rates could vary

over an order of magnitude in the field depending on

hydrodynamic conditions and algal flux. More work

assessing filtration rates of natural mussel assemblages

under varying conditions is needed.

Biofiltration capacities of mussel assemblages can

vary substantially with mussel abundance, species

composition, and with environmental conditions such

as discharge, temperature, and productivity (Spooner

& Vaughn, 2008; Vaughn, 2010). Individual mussel

filtering rates are governed by mussel physiology and

food availability, among other factors. Mussel species

have different, temperature-dependent filtration rates

(Spooner & Vaughn, 2008). Thus, the biofiltration

capacity of a mussel assemblage can vary substantially

with assemblage composition and seasonally with

temperature. In addition, mussels adjust their feeding

rates based on food concentrations (Bril et al., 2014).

Disturbance can also influence biofiltration capacity:

Lorenz et al. (2013) found that shear stress from boats

can reduce daily filtration rates by up to 7%. Finally,

biofiltration capacity is heavily dependent on mussel

biomass and the volume and residence time of the

overlying water (Strayer et al., 1999). For example,

mussel assemblages in a small U.S. river (Kiamichi

River, Oklahoma) can process the overlying water

multiple times before it flows over them during

periods of low summer discharge, but can process

only a fraction of the water column during high spring

and winter flows (Vaughn et al., 2004; Vaughn, 2010).

Human-engineered systems often lack ‘‘natural’’

ecosystem services. A solution is to reintegrate

natural ecosystem services into engineered systems.

There is a growing interest in using the natural

filtering capacity of mussels to pretreat water for

human use. For example, Newton et al. (2011)

estimated that mussels in a 480-km reach of the

Mississippi River filter approximately 53 million

m-3 day-1, while a Minneapolis-St. Paul wastewater

treatment plant produces wastewater flows for

0.7 million m-3 day-1. This interest extends to using

mussels and other freshwater bivalves to selectively

remove disease organisms and contaminants from

water supplies, and this is a rapidly growing area of

inquiry (Li et al., 2010; Izumi et al., 2012). For

example, Faust et al. (2009) found that Corbicula

fluminea can remove avian influenza viruses from the

water, and reduce infectivity. Ismail et al. (2014)

found that Anodonta californiensis and Corbicula

fluminea can remove pharmaceuticals, personal care

products, herbicides, and flame retardants from the

water and either biodeposit or store them in their

tissue. This research group also discovered that

mussels can actually remove hydrophobic trace

organic compounds that cannot be fully removed by

conventional wastewater treatment such as ibuprofen

and beta blockers. Anodonta californiensis also can

remove significant amounts of E. coli from lake water

(Ismail et al., 2015). There is also increasing interest

in using mussel biofiltration to augment aquaculture.

The mussel Diplodon chilensis was used to reduce

nutrient loads from salmon farming (Soto & Mena,

1999). Othman et al. (2015) found that filtering

mussels reduced bacterial populations by greater than

85% and led to higher growth and lower mortality of

farmed Nile tilapia. Of course, while mussels remove

contaminants and store them in their tissues or

biodeposit them, we know relatively little about the

effects of these contaminant burdens on the mussels

themselves.

Supporting services: nutrient cycling and storage

Mussels feed on particulate nutrients and convert these

nutrients into soft tissue and shell, biodeposits (feces

and pseudofeces), and dissolved nutrients (Fig. 1)

(Strayer, 2014). Thus, where mussel biomass is high,

mussels play an important role in nutrient recycling,
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translocation and storage, can alter water quality, and

potentially can play a role in nutrient abatement.

Mussels excrete soluble nutrients to the water

column (Vaughn & Hakenkamp, 2001). These nutri-

ents are readily taken up by algae and heterotrophic

bacteria (Fig. 2) (Vaughn et al., 2008; Bril et al.,

2014), and cascade up aquatic food webs (see

discussion of food webs below). Mussels have been

shown to alleviate nutrient limitation and alter algae

communities in streams, impacting water quality

(Atkinson et al., 2013a). For example, in three rivers

in the southern U.S., sites without mussels were

nitrogen-limited with approximately 26% higher rel-

ative abundance of N-fixing bluegreen algae, while

sites with high mussel densities were co-limited (N

and P) and dominated by diatoms (Atkinson et al.,

2013b). Mussel roles in water column nutrient

dynamics are described more thoroughly in Atkinson

& Vaughn (2015), Vaughn & Hakenkamp (2001), and

Vaughn et al. (2008).

We understand mussel roles in water column

nutrient dynamics much better than we understand

their role in sediment nutrient dynamics. Mussels

couple the water column and sediment compartments

by removing particulate materials from the water

column and depositing them to the sediment as feces

and pseudofeces (Figs. 1, 2). Mussel biodeposition

rates can be quite high. Strayer (2014) has estimated

that rates of unionid biodeposition, averaged over an

entire lake or river, may be as high as

1–300 mg C m-2 day-1, 0.1–30 mg N m-2 day-1,

and 0.03–100 mg P m-2 day-1. However, amounts

are likely to be quite variable and we know little about

the overall chemical composition of biodeposits. Most

biodeposits are likely to be initially concentrated

around mussel aggregations (Fig. 2), but then are

dispersed downstream depending on sediment and

hydrologic conditions. Thus, biodeposits likely repre-

sent an important nutrient translocation flux from

mussel beds to other stream areas (Strayer, 2014).

However, we have a poor understanding of the role

and importance of these biodeposits in nutrient

dynamics and food web support, and much more

research is needed in this area.

Mussel effects on nutrient dynamics are highly

context-dependent. First, as with biofiltration, mussels

have species-specific, temperature-dependent excre-

tion rates. These differences mean that species com-

position of mussel assemblages can have large effects

on nutrient recycling and storage rates at the scale of

river reaches and even entire rivers (Vaughn, 2010;

Atkinson et al., 2013b; Atkinson & Vaughn, 2015).

Secondly, also like biofiltration, mussel effects are

much stronger at baseflow than under high discharge

conditions (Atkinson & Vaughn, 2015). Finally,

Strayer (2014) suggested that mussels should have

Fig. 2 A Schematic showing that mussel beds are patchily

distributed in rivers, separated by areas with no mussels or low

mussel abundance. In many rivers, mussel beds will be further

apart than shown here. B Potential fluxes in and out of mussel

beds (hotspots of biological activity) and other river areas

(coldspots)
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much stronger effects in more ‘‘pristine’’ systems,

where nutrients are limiting, and this does indeed seem

to be the case. In the relatively undeveloped, nitrogen-

limited rivers of southeastern Oklahoma, U.S., mus-

sels alleviate nitrogen limitation, shorten nutrient

spirals, and mussel-derived nutrients can account for

up to 40% of nutrient demand (Atkinson et al.,

2013b, 2014c). Spooner et al. (2013) examined how

nutrients from mussels affected algae and macroin-

vertebrates across 14 streams in Ontario that varied in

background nutrient loads. In more pristine areas,

mussels had strong effects, increasing algal and

macroinvertebrate biodiversity. In areas with high

nutrient loads, these effects were diminished or lost. In

an experiment with Corbicula, Turek & Hoellein

(2015) found that these bivalves increased ammonium

flux more than N2 production under low nutrient

conditions. Under high nutrient loads, bivalves sig-

nificantly increase both ammonium and N2 flux out of

the sediments, either through increased nitrification–

denitrification or enhanced exchange of nutrients

between the water column and sediments via

bioturbation.

Mussels accumulate nutrients in both their soft

tissue and shell as they grow. These nutrients are then

released as reproductive products (sperm, larvae, and

structures that support larvae), via excretion as the

result of protein breakdown (catabolism) under

stress, via soft tissue decomposition at death, and

through long-term shell dissolution (Strayer, 2014).

As described above, mussels have different temper-

ature tolerances that affect physiological rates.

Thermally sensitive species will catabolize their

tissue under high temperatures, leading to higher

excretion rates and increased nutrient cycling (Spoo-

ner & Vaughn, 2008). Nutrients stored in mussel soft

tissue are released at death through decomposition. If

mussel deaths occur at a regular interval throughout

the year, nutrient release from tissue breakdown may

be offset by nutrient uptake by growing animals

(‘‘capacitance,’’ Strayer, 2014). However, mussels

are long-lived, and in many cases deaths are

synchronous and catastrophic (Haag, 2012). In these

cases, mussel death can result in very large nutrient

pulses into the ecosystem (Sousa et al., 2012; Bódis

et al., 2014; McDowell et al., 2016). Mussels also

store significant amounts of nutrients in their shells

(Atkinson et al., 2014b; Vaughn et al., 2015), which

are released slowly into the ecosystem as shells

dissolve (Strayer & Malcom, 2007). These stored

nutrients can have important and long-term effects on

both aquatic and terrestrial systems. For example,

recent work has shown that marine shell middens

created by Canadian First Native groups in British

Columbia act like a ‘‘slow release’’ fertilizer,

increasing calcium and phosphorus in the soil,

decreasing soil acidity, and leading to increased

forest growth (Trant et al., 2016), and there is no

reason to expect that this might not also occur in

freshwater mussels. However, whether mussels serve

as a short-term nutrient capacitors or longer-term

nutrient sinks, these nutrients are retained in the

ecosystem and incorporated into food webs rather

than being transported downstream (Fig. 2) (Atkin-

son et al., 2014c). Although nutrients retained in this

manner in one river may seem insignificant, summed

across multiple watersheds this biological nutrient

retention could help mitigate the effects of nutrient

pollution (FMCS, 2016).

Mussels should have strong effects on coupled

nitrification–denitrification by biodepositing organic

material, thus increasing rates of both processes and

by bioturbating sediments as they move. Denitrifica-

tion is a particularly important ecosystem service,

because it converts organic nitrogen to molecular

nitrogen, moving it back into the atmosphere in an

inorganic form. Marine bivalves, freshwater zebra

mussels, and Corbicula have all been shown to

increase denitrification, depending on the environ-

mental conditions (Bruesewitz et al., 2009; Hoellein

& Zarnoch, 2014; Turek & Hoellein, 2015). The

effects of dense mussel assemblages on denitrifica-

tion are an overlooked and potentially significant

component of nitrogen removal from aquatic systems

(Turek & Hoellein, 2015).

Supporting services: mussels as habitat and habitat

modifiers

On a global basis, mollusks add physical structure to

the environment via their shells, resulting in biogenic

habitat such as oyster reefs (Gutierrez et al., 2003).

Freshwater mussel shells provide habitat for other

organisms as well as play a role in biogeochemical

cycling (Strayer & Malcom, 2007). Rates of shell

production and decay depend on the amount of

accumulated spent shell material, but can exceed
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([10 kg dry mass m-2) (Strayer & Malcom, 2007;

Ilarri et al., 2015a, b).

Aggregations of mussels can support more abun-

dant and diverse macroinvertebrate communities than

similar habitat without mussels (Beckett et al., 1996;

Howard & Cuffey, 2006; Vaughn & Spooner, 2006;

Aldridge et al., 2007). Shells themselves provide

habitat in otherwise soft sediments, and crevices on

shells provide protection from flow and predation.

Live mussels support different communities on their

shells than dead mussels or stones (Spooner &

Vaughn, 2006; Vaughn et al., 2008; Bódis et al.,

2014; Ilarri et al., 2015a, b). Algae grow on mussel

shells, which attract grazing invertebrates (Francoeur

et al., 2002; Allen et al., 2012; Spooner et al., 2012)

and cascade up the food web. This phenomenon is

described more thoroughly in the section below on

mussels’ roles in food webs.

Mussels tend to occur in areas that are more

stable under high flows (Strayer, 1999; Gangloff &

Feminella, 2007; Zigler et al., 2008; Allen & Vaughn,

2010). Strayer (1999) characterized river reaches with

abundant mussels as areas that are protected from

severe disturbance by floods with return periods of

three to 30 years, and suggested that the patchiness of

flow refugia in space therefore causes the patchiness of

mussel beds in rivers. Do mussels simply proliferate in

these areas or do mussels function as ecological

engineers that actively modify sediments to make

themmore stable, such as been found for other animals

such as salmon and caddisflies (Moore, 2006)? It has

long been suggested that freshwater mussels stabilize

sediment, decreasing downstream transport of labile

sediments, and making sediments more favorable for

other organisms. Yet, there are not good quantitative

data demonstrating this phenomenon. In a mesocosm

study, Zimmerman and de Szalay (2007) found that

sessile mussels increased sediment cohesion and thus

sediment stability, but burrowing activities increased

erosion and destabilized sediments. However, Allen &

Vaughn (2011), in a flume study, found that increasing

mussel species richness increased sediment erosion at

both low and high mussel densities. It is possible that

observations of mussel–sediment interactions in small

mesocosm and flume studies may not scale up well to

large, dense mussel beds. We need much more

research on this topic, particularly at the scale of whole

mussel beds and river reaches (Allen et al., 2014).

Supporting services: mussels support food webs

Mussels play important roles in food webs through the

bottom-up provisioning of nutrients and energy. In rivers,

mussels often occur as aggregations called mussel beds

that can be very dense (up to 100 ind m-2) and speciose

(10–20 sp.) (Atkinson&Vaughn, 2015).Mussel beds are

patchily distributed in streams because they are con-

strained to stable sediments with low shear stresses (as

described above), and mussels recover very slowly from

disturbance (Haag, 2012). Thus, mussel beds in streams

are usually separated by long reaches where mussels

either do not occur or occur in low abundance (Atkinson

& Vaughn, 2015; Newton et al., 2011; Fig. 2A). These

beds canbehotspots of biological activity that support the

rest of the food web by providing habitat, as described

above, and through the bottom-up provisioning of

nutrients (Fig. 2B). Nutrients excreted and biodeposited

bymussels lead to increases in benthic algae (Spooner &

Vaughn, 2006, 2012; Vaughn et al., 2007) and subse-

quently macroinvertebrates (Vaughn & Spooner, 2006;

Spooner et al., 2012). In separate laboratory (Allen et al.,

2012; Sansom, 2013) and field (Atkinson et al., 2014c)

experiments, seston was labeled with a heavy nitrogen

isotope (15N), fed to mussels, and then nitrogen derived

from mussel excreta was tracked throughout the food

web. Mussel-derived nitrogen was found in most food

web compartments including benthic algae, benthic

macroinvertebrates,macrophytes, and primary consumer

fish. Atkinson et al. (2014c) found that mussel excretion

could account for 40% of the nitrogen in a nutrient-

limited river reach and thatmussels supplied up to 19%of

the nitrogen in specific food web compartments. Allen

et al. (2012) found that once the grazing insect larvae

metamorphose into winged adults, this nitrogen moves

into the riparian, terrestrial food web as the insects are

consumed by spiders. In a different study, Novais et al.

(2015) found that die offs of Corbicula provided carrion

to adjacent terrestrial systems and entered the detrital

foodweb. Thus,mussels are subsidizing both aquatic and

terrestrial food webs and linking aquatic and terrestrial

ecosystems
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Supporting services: mussels as environmental

monitors

Freshwater mussels have the potential to serve as

important sentinels or biomonitors of environmental

change, revealing past conditions and monitoring

future change. Because they are sessile filter feeders,

they bioaccumulate particles, allowing measurement

of stressor levels in their soft tissues. They are

widespread, often occur at high densities and are

relatively long-lived, allowing repeated sampling over

time (Green et al., 1985; Rocha et al., 2015). Finally,

geochemistry of shells can reveal past physical and

chemical conditions, over both large spatial and

temporal scales (Brown et al., 2005).

Shells incorporate and retain patterns of the chem-

ical and physical environment long after the animal’s

death, and thus can act as historical archives to reveal

long-term environmental change. First, simple pat-

terns of aragonite deposition, revealed as growth lines

in the shell similar to tree rings, can reflect past

temperature, flow, and other conditions under which

mussels grew (Schone et al., 2004; Dunca et al., 2005;

Geist et al., 2005; Rypel et al., 2009; Black et al., 2010;

Fritts et al., 2017). Trace metals incorporated into shell

tissue can be used to uncover past pollution events

(Jamil et al., 1999; Brown et al., 2005) and upwelling

periods (Langlet et al., 2007). Isotopic signatures of

O18 and C13 in mussels have been used to reveal

climatic conditions as far back as the Miocene

(Blazejowski et al., 2013).

Mussel soft tissue can be used to assess environ-

mental conditions over shorter time scales. Chemical

content in mussel hemolymph, mantle, and/or foot

tissue can be used as sublethal biomarkers to monitor

water quality, by stress or immune responses (Newton

& Cope, 2007; Fritts et al., 2015; Goodchild et al.,

2015; Jasinska et al., 2015; Kolarevic et al., 2016).

Pharmaceuticals bioaccumulate in mussels at higher

levels than many other aquatic organisms including

fish (Du et al., 2014). Nitrogen signatures in mussel

soft tissue reflect background nutrient conditions

(Wen et al., 2010), in particular residential and

agricultural land use (McKinney et al., 2002), and

net nitrogen loading could be used as a bioassessment

tool for tracking agricultural nitrogen sources (Atkin-

son et al., 2014a). Finally, the stable isotope compo-

sition of the periostracum on the outside of the shell

can also be used to track environmental change and

understand historical food web conditions (Delong &

Thorp, 2009; Fritts et al., 2017).

Mussels have become an important indicator

organism in ecotoxicology studies (Cope et al.,

2008). Juvenile mussels are particularly useful

because they are endobenthic and important for

examining groundwater toxicity, and a great deal of

recent work has gone into establishing water quality

criteria using juveniles (Augspurger et al., 2007;

Wang et al., 2007). Juvenile mussels are more

sensitive to ammonium than any other freshwater

organism studied to date (Newton & Bartsch, 2007),

and this sensitivity resulted in the U.S. Environmental

Protection Agency revising the water quality criteria

for ammonia (FMCS, 2016). Finally, mussels are

becoming a viable option to detect ‘‘real time’’

changes in water quality by monitoring physiological

responses such as gape (shell opening and closing),

variations in heart rate, and changes in filtration and

behavior (Hauser, 2015; Goodchild et al., 2016;

Hartmann et al., 2016).

Provisioning and cultural services

Mussels are prey for other organisms such as muskrats

(Tyrell & Hornbach, 1998) and turtles (Atkinson,

2013). Prehistoric humans ate mussels and used their

shells as ornaments, tools, and utensils. In the U.S.,

archeological data indicate that Native Americans

harvested mussels for food as long as 10,000 years ago

(Haag, 2012). Most present-day western cultures do

not utilize mussels as food, although they are consid-

ered a Native American traditional (‘‘first food’’) by

tribes in the Pacific Northwest (Brubaker et al., 2009)

and mussel harvest is a reserved treaty harvest right for

some Native American tribes (Brim Box et al., 2006).

Mussels and Corbicula are commonly eaten in many

southeast Asian regions (Bolotov et al., 2014), and

recent work documents their overexploitation there

(Ziertitz et al., 2016, 2017).

Native Americans in the southeastern U.S. used

mussel shells for wood working, as digging tools, and

ground them to powder to temper pottery (Rafferty &

Peacock, 2008). Extensive harvest of mussels for

freshwater pearls and for the pearl button industry

began in the 1850s (Humphries & Winemiller, 2009).

During the peak button harvest year of 1912, 50,000

tons of mussels were removed from North American
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rivers (Haag, 2012). A second wave of mussel harvest

occurred following World War II and up until the mid

1990s. In this case, beads made of heavy pieces of

shell were used as seeds for the Japanese cultured pearl

industry (Haag, 2012). Freshwater pearl farming is

still a large industry in China (Jiale & Yingsen, 2009).

Mussels played an important role in early Native

American and white culture. Beads and other orna-

ments made from shells played a significant role in

Native American rituals and ceremonies (Claassen,

2008). Some tribes, such as the Choctaw Nation in

Oklahoma, have active programs to revive these

cultural traditions (Choctaw Nation, 2016). In areas

where mussels were historically very abundant, they

invoked as ‘‘sense of place’’ that was translated into

names of creeks and even as ornaments on graves

(Haag, 2012). Historic and current human exploitation

and cultural use of North American mussels are

thoroughly reviewed by Haag (2012).

Losses, restoration and valuation

Freshwater mussels are one of the most imperiled

groups of organisms globally (Lydeard et al., 2004;

Lopes-Lima et al., 2014). Approximately 30 North

American taxa have become extinct over the past

century, and 65% of the remaining 300 North Amer-

ican species are considered vulnerable to extinction

(Haag & Williams, 2014). Ricciardi & Rasmussen

(1999) predict that we will lose as many of 50% of the

remaining species in the next century. In addition,

mussel declines include not only species losses but

also large declines in the abundance and biomass of

once common species (Haag & Williams, 2014).

These losses of common species are undoubtedly

leading to large losses in mussel-provided ecosystem

services.

The Kiamichi River in southeastern Oklahoma,

U.S., provides a case study of the link between mussel

losses and declines in ecosystem services. My students

and I sampled mussel communities in this river over a

20-year period where drought-induced changes in

flows and poor water management from a tributary

reservoir led to large declines in mussel biomass

(Galbraith et al., 2010; Allen et al., 2013; Atkinson

et al., 2014b). We used laboratory derived physiolog-

ical rates and river-wide estimates of species-specific

mussel biomass to estimate ecosystem services

provided by mussels. We found that biofiltration,

nitrogen and phosphorus cycling, and nitrogen, phos-

phorus and carbon storage provided by mussels

declined almost 60% over this time period (Vaughn

et al., 2015).

Although the importance of mussel-provided

ecosystem services is increasingly recognized, there

have been few attempts to determine how the loss of

these services may affect freshwater ecosystems, and

the subsequent social, cultural, and economic benefits

for humans FMCS, 2016; Castro et al., 2016b). The

value of most mussel-provided ecosystem services

cannot be assessed with a traditional marketplace

framework, rather we need to encompass non-market

and modeling methods (Southwick & Loftus, 2003;

Ruffo & Kareiva, 2009; Castro et al., 2016a). Valu-

ation studies of oysters and other marine bivalves can

guide these efforts. For example, while oysters are a

fishery commodity, they also provide a host of non-

market ecosystem services such as biogenic habitat,

biofiltration, and nutrient removal (Grabowski et al.,

2012). The value of these non-market services can be

assessed using the value of engineered structures for

water filtration, wastewater treatment costs, replace-

ment costs for sewage treatment plants, and nutrient

credit programs (Beck et al., 2011; Grabowski et al.,

2012). Along these lines, the American Fisheries

Society has produced guidelines for assessing mone-

tary damage from mussel kills that include ecological,

use and non-use values, plus restoration costs (South-

wick & Loftus, 2003). Because information to accu-

rately estimate non-economic value is rarely available,

they recommend using replacement costs as a conser-

vative method for determining restitution for killed

mussels.

Valuation of ecosystem services must also consider

the social demand for ecosystem services, which can

be assessed with metrics such as social perceptions or

willingness to pay for services such as biofiltration

producing clean water. For example, Castro et al.

(2016a, b) used face-to-face surveys to assess multiple

stakeholders’ social perceptions and willingness to

pay for ecosystem services in the Kiamichi watershed.

These surveys included showing stakeholders pho-

tographs of mussel and fish species and the ecosystem

services that they provide. This study found that most

stakeholders identified habitat for species and water

quality as the most important and economically

valuable ecosystem services. Regulating services
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received the highest willingness to pay value. The

study also identified potential conflicts between water

user groups depending on whether they lived in the

watershed or were distant water users (Castro et al.,

2016a, b).

Technology for propagating freshwater mussels has

improved greatly over the past 20 years. In the U.S.,

there are now over a dozen federal and state facilities

dedicated mussel to propagation, usually related to

restoring listed species (FMCS, 2016). Such facilities

could also be used for the large-scale production of

common mussel species, which could then be restored

to rivers to re-establish lost ecosystem services such as

biofiltration and nutrient abatement.

Haag & Williams (2014) suggest that a conserva-

tion goal should be to protect mussels for the benefit of

stream ecosystems, rather than vice versa. To accom-

plish this, we need much more quantification of the

value and magnitude of ecosystem services provided

by mussels, across species, habitats, and environmen-

tal conditions, and scaled up to whole watersheds. We

need tools that will allow us to value mussel ecosystem

services in a way that is understandable to both the

public and to policy makers. Achieving this will

require collaboration with social scientists, econo-

mists, and stakeholders. Sustaining and restoring

mussel ecosystem services represent a transdisci-

plinary challenge, but the benefits will likely far

exceed the capital invested in this effort.
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